779 research outputs found

    An unusual termination of facial vein and anterior division of retromandibular vein into external jugular vein: a case report.

    Get PDF
    Facial vein, being the largest vein of the face forms the common facial vein after joining with the anterior division of retromandibular vein below the angle of the mandible. Usually, it drains into the internal jugular vein. During routine dissection of head and neck region of a male cadaver, aged approximately 50 years, an unusual pattern in the termination of veins on the left side of the neck was observed. The formation, course and termination of external jugular vein were normal. The anterior division of retromandibular vein joined with external jugular vein about 5 cm above the clavicle and the facial vein opened into the external jugular vein about 2.5 cm above the clavicle. In addition, there was a thin venous communication between anterior division of retromandibular vein and external jugular vein. The superficial veins of the neck are often used for cannulation; either for intravenous infusion or for central venous pressure monitoring. Furthermore, these venous segments are used as a patch for carotid endarterectomies. Hence, a thorough knowledge of the normal anatomy and their variations may be useful for performing these procedures

    Discussion on a possible neutrino detector located in India

    Get PDF
    We have identified some important and worthwhile physics opportunitites with a possible neutrino detector located in India. Particular emphasis is placed on the geographical advantage with a stress on the complimentary aspects with respect to other neutrino detectors already in operation.Comment: 9 pages; arXiv copy of published proceedings contributio

    Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.)

    Get PDF
    Single feature polymorphisms (SFPs) are microarray-based molecular markers that are detected by hybridization of DNA or cRNA to oligonucleotide probes. With an objective to identify the potential polymorphic markers for drought tolerance in pigeonpea [Cajanus cajan (L.) Millspaugh], an important legume crop for the semi-arid tropics but deficient in genomic resources, Affymetrix Genome Arrays of soybean (Glycine max), a closely related species of pigeonpea were used on cRNA of six parental genotypes of three mapping populations of pigeonpea segregating for agronomic traits like drought tolerance and pod borer (Helicoverpa armigiera) resistance. By using robustified projection pursuit method on 15 pair-wise comparisons for the six parental genotypes, 5,692 SFPs were identified. Number of SFPs varied from 780 (ICPL 8755 × ICPL 227) to 854 (ICPL 151 × ICPL 87) per parental combination of the mapping populations. Randomly selected 179 SFPs were used for validation by Sanger sequencing and good quality sequence data were obtained for 99 genes of which 75 genes showed sequence polymorphisms. While associating the sequence polymorphisms with SFPs detected, true positives were observed for 52.6% SFPs detected. In terms of parental combinations of the mapping populations, occurrence of true positives was 34.48% for ICPL 151 × ICPL 87, 41.86% for ICPL 8755 × ICPL 227, and 81.58% for ICP 28 × ICPW 94. In addition, a set of 139 candidate genes that may be associated with drought tolerance has been identified based on gene ontology analysis of the homologous pigeonpea genes to the soybean genes that detected SFPs between the parents of the mapping populations segregating for drought tolerance

    Motional Averaging in a Superconducting Qubit

    Full text link
    Superconducting circuits with Josephson junctions are promising candidates for developing future quantum technologies. Of particular interest is to use these circuits to study effects that typically occur in complex condensed-matter systems. Here, we employ a superconducting quantum bit (qubit),a transmon, to carry out an analog simulation of motional averaging, a phenomenon initially observed in nuclear magnetic resonance (NMR) spectroscopy. To realize this effect, the flux bias of the transmon is modulated by a controllable pseudo-random telegraph noise, resulting in stochastic jumping of the energy separation between two discrete values. When the jumping is faster than a dynamical threshold set by the frequency displacement of the levels, the two separated spectral lines merge into a single narrow-width, motional-averaged line. With sinusoidal modulation a complex pattern of additional sidebands is observed. We demonstrate experimentally that the modulated system remains quantum coherent, with modified transition frequencies, Rabi couplings, and dephasing rates. These results represent the first steps towards more advanced quantum simulations using artificial atoms.Comment: Main text (5 pages and 4 figures) and Supplementary Information (11 pages and 5 figures

    Cells of the human intestinal tract mapped across space and time

    Get PDF
    The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung’s disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease

    Experimental Infection of Mice with Avian Paramyxovirus Serotypes 1 to 9

    Get PDF
    The nine serotypes of avian paramyxoviruses (APMVs) are frequently isolated from domestic and wild birds worldwide. APMV-1, also called Newcastle disease virus, was shown to be attenuated in non-avian species and is being developed as a potential vector for human vaccines. In the present study, we extended this evaluation to the other eight serotypes by evaluating infection in BALB/c mice. Mice were inoculated intranasally with a prototype strain of each of the nine serotypes and monitored for clinical disease, gross pathology, histopathology, virus replication and viral antigen distribution, and seroconversion. On the basis of multiple criteria, each of the APMV serotypes except serotype 5 was found to replicate in mice. Five of the serotypes produced clinical disease and significant weight loss in the following order of severity: 1, 2>6, 9>7. However, disease was short-lived. The other serotypes produced no evident clinical disease. Replication of all of the APMVs except APMV-5 in the nasal turbinates and lungs was confirmed by the recovery of infectious virus and by substantial expression of viral antigen in the epithelial lining detected by immunohistochemistry. Trace levels of infectious APMV-4 and -9 were detected in the brain of some animals; otherwise, no virus was detected in the brain, small intestine, kidney, or spleen. Histologically, infection with the APMVs resulted in lung lesions consistent with broncho-interstitial pneumonia of varying severity that were completely resolved at 14 days post infection. All of the mice infected with the APMVs except APMV-5 produced serotype-specific HI serum antibodies, confirming a lack of replication of APMV-5. Taken together, these results demonstrate that all APMV serotypes except APMV-5 are capable of replicating in mice with minimal disease and pathology

    Immunization of Chickens with Newcastle Disease Virus Expressing H5 Hemagglutinin Protects against Highly Pathogenic H5N1 Avian Influenza Viruses

    Get PDF
    Highly-pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are the two most important poultry viruses in the world. Natural low-virulence NDV strains have been used as vaccines over the past 70 years with proven track records. We have previously developed a reverse genetics system to produce low-virulent NDV vaccine strain LaSota from cloned cDNA. This system allows us to use NDV as a vaccine vector for other avian pathogens.Here, we constructed two recombinant NDVs (rNDVs) each of which expresses the hemagglutinin (HA) gene of HPAIV H5N1 strain A/Vietnam/1203/2004 from an added gene. In one, rNDV (rNDV-HA), the open reading frame (ORF) of HA gene was expressed without modification. In the second, rNDV (rNDV-HAF), the ORF was modified so that the transmembrane and cytoplasmic domains of the encoded HA gene were replaced with those of the NDV F protein. The insertion of either version of the HA ORF did not increase the virulence of the rNDV vector. The HA protein was found to be incorporated into the envelopes of both rNDV-HA and rNDV-HAF. However, there was an enhanced incorporation of the HA protein in rNDV-HAF. Chickens immunized with a single dose of either rNDV-HA or rNDV-HAF induced a high titer of HPAIV H5-specific antibodies and were completely protected against challenge with NDV as well as lethal challenges of both homologous and heterologous HPAIV H5N1.Our results suggest that these chimeric viruses have potential as safe and effective bivalent vaccines against NDV and. HPAIV. These vaccines will be convenient and affordable, which will be highly beneficial to the poultry industry. Furthermore, immunization with these vaccines will permit serological differentiation of vaccinated and avian influenza field virus infected animals

    A SNP and SSR Based Genetic Map of Asparagus Bean (Vigna. unguiculata ssp. sesquipedialis) and Comparison with the Broader Species

    Get PDF
    Asparagus bean (Vigna. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea [Vigna. unguiculata (L.) Walp.] that apparently originated in East Asia and is characterized by extremely long and thin pods and an aggressive climbing growth habit. The crop is widely cultivated throughout Asia for the production of immature pods known as ‘long beans’ or ‘asparagus beans’. While the genome of cowpea ssp. unguiculata has been characterized recently by high-density genetic mapping and partial sequencing, little is known about the genome of asparagus bean. We report here the first genetic map of asparagus bean based on SNP and SSR markers. The current map consists of 375 loci mapped onto 11 linkage groups (LGs), with 191 loci detected by SNP markers and 184 loci by SSR markers. The overall map length is 745 cM, with an average marker distance of 1.98 cM. There are four high marker-density blocks distributed on three LGs and three regions of segregation distortion (SDRs) identified on two other LGs, two of which co-locate in chromosomal regions syntenic to SDRs in soybean. Synteny between asparagus bean and the model legume Lotus. japonica was also established. This work provides the basis for mapping and functional analysis of genes/QTLs of particular interest in asparagus bean, as well as for comparative genomics study of cowpea at the subspecies level

    Absence of Ca2+-stimulated adenylyl cyclases leads to reduced synaptic plasticity and impaired experience-dependent fear memory

    Get PDF
    Ca2+-stimulated adenylyl cyclase (AC) 1 and 8 are two genes that have been shown to play critical roles in fear memory. AC1 and AC8 couple neuronal activity and intracellular Ca2+ increases to the production of cyclic adenosine monophosphate and are localized synaptically, suggesting that Ca2+-stimulated ACs may modulate synaptic plasticity. Here, we first established that Ca2+-stimulated ACs modulate protein markers of synaptic activity at baseline and after learning. Primary hippocampal cell cultures showed that AC1/AC8 double-knockout (DKO) mice have reduced SV2, a synaptic vesicle protein, abundance along their dendritic processes, and this reduction can be rescued through lentivirus delivery of AC8 to the DKO cells. Additionally, phospho-synapsin, a protein implicated in the regulation of neurotransmitter release at the synapse, is decreased in vivo 1 h after conditioned fear (CF) training in DKO mice. Importantly, additional experiments showed that long-term potentiation deficits present in DKO mice are rescued by acutely replacing AC8 in the forebrain, further supporting the idea that Ca2+-stimulated AC activity is a crucial modulator of synaptic plasticity. Previous studies have demonstrated that memory is continually modulated by gene–environment interactions. The last set of experiments evaluated the effects of knocking out AC1 and AC8 genes on experience-dependent changes in CF memory. We showed that the strength of CF memory in wild-type mice is determined by previous environment, minimal or enriched, whereas memory in DKO mice is unaffected. Thus, overall these results show that AC1 and AC8 modulate markers of synaptic activity and help integrate environmental information to modulate fear memory
    corecore